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You make a red and yellow 
hexahexaflexagon by folding and 
gluing a multicoloured paper strip 
in a special way. Once made you 
start to explore it. As you fold and 
unfold it, you magically reveal 
new sides as the flexagon changes 
colour. 
You create a map as you explore it. It’s 
like a tube map. Circles are places you 
find. Lines show the places you can move 
between by folding and unfolding the 
flexagon. 

This special kind of map is called a finite 
state machine. Even though the map is just 
a sketch of circles and lines it is also a kind 
of program. It describes the computations 
involved in flexing the flexagon.

By drawing the map in a special finite state 
machine simulator, you have created a 
virtual version of the hexahexaflexagon. 
You can now explore it using the simulation 
you have created.

Using the same idea you can quickly 
create early prototypes of the user 
interfaces for any program you are 
developing, to check your ideas work. You 
can show it to the people who will use it. 
That way you can check they find it easy 
to use, don’t make mistakes and never get 
confused about what to do next. It helps 
you make sure that your design works.

By quickly creating an early finite state 
machine version of a user interface you 
can also check other things about it, like 
whether you can always get back to the 
main home screen in one button press,  
or WON’T get stuck with no way out.

This really matters if people’s lives depend 
on the program you are creating - if it 
is a heart monitor to keep people alive 
perhaps, or controls a roller coaster, or 
even if it is the shutdown system of a 
nuclear power plant.

Finite state machines are powerful tools  
in the computational thinking toolbox.

From paper 
puzzles to  
saving lives
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Hexahexaflexagons

Hexahexaflexagons are strange 
folded objects that have hidden 
sides. At any time only 2 sides are 
visible, but a hexahexaflexagon 
actually has six sides. Some sides 
can appear in more than one state  
with a different centre. 

Let’s start by making one. Here is 
how to do it (or watch the video at 
www.cs4fn.org/hexahexaflexagon/).

Making a hexahexaflexagon:  
the algorithm
1.  Download a copy of the coloured 

hexahexaflexagon template from  
www.cs4fn.org/hexahexaflexagon/ 

2.  Print an enlarged, coloured version  
on to A3 paper. 

3.  Cut round the outside of the strip  
of triangles.

4. Fold carefully down the centre line.

5.  Glue the two white sides back-to-back 
down the full length of the strip:  

•  The back of triangle FLAP 1 should 
be glued to the back of the end-most 
ORANGE triangle. 

•  At the other end the back of triangle 
FLAP 2 should be stuck to the back  
of the end RED triangle.

Making a  
Flexagon

www.cs4fn.org  5

Download a copy of the
multicoloured hexahexaflexagon

template from www.cs4fn.org/
hexahexaflexagon/
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6.  Starting from the FLAP 1 end, fold the 
first purple triangle against its adjacent 
purple one, then green against green, 
orange against orange, and so on 
down the strip. Make sure you fold as 
precisely as you can along the lines, 
so that triangles fold exactly over each 
other. You should end up with a shorter 
folded strip that looks like the one below.

7.  Do a similar thing with the result. 
Starting at the FLAP1 end, fold the 
first blue triangle against the adjacent 
blue triangle. This brings three yellow 
triangles together as below.

Making a  
Flexagon

FL
AP

 1

After the first round of folding you 
have a strip looking like this.

With another fold it starts to make 
a hexagon of yellow triangles.

FLAP 1

FLAP 2
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8.  Now fold the next two blue triangles 
together, back-to-back in the same 
way. You should now have five yellow 
triangles together in a hexagon shape 
with the next blue triangle.

9.  Fold the final two blue triangles together, 
tucking FLAP 2 in, so it is under the 
hexagon you have made, leaving a 
hexagon with FLAP 1 sticking out.

Continue folding the same colours back-to-
back to fill out the yellow hexagon.

FLAP 1

FLAP 1

After one more fold, FLAP 2  
is tucked under the hexagon.
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Making a  
Flexagon

10.  Fold FLAP1 back and glue it to FLAP 2 
so the faces with these words are now 
glued together. You should be left with 
a yellow hexagon of triangles on top. 
Turn it over and you should have  
a similar red hexagon of triangles.

The final hexahexaflexagon is yellow 
on one side and red on the other.

You have now made a 
hexahexaflexagon…
time to flex it.
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Flexing  your 
hexahexaflexagon

Your flexagon has a yellow side and a 
red side. You can reveal new, different 
coloured sides by ‘flexing’ it: folding it up 
and unfolding it again. Here’s how. 

Flexing a hexahexaflexagon:  
the algorithm
1.  Start with the yellow side up. Two of the 

yellow triangles have a letter ‘a’ on them. 
Pinch those two triangles together.

2.  Opposite them are two yellow triangles 
with ‘b’ marked on them. While still 
pinching the ‘a’ s, flatten the ‘b’ sides 
towards them so the flexagon makes a  
Y shape from above as in diagram.

3.  Open the flexagon up from the middle of 
the Y, like a flower bud opening. A new 
blue side will be revealed. The yellow 
side has flipped to the back and the 
original red side has disappeared.

4.  Keep doing this – pinching two sides 
together, flattening the opposite side and 
opening up from the middle and you will 
reveal more coloured sides. Explore!

b

b

a

a
b

a

a

b

pinch

pinch

flatten

Flex a flexagon by pinching two 
sides together between the 2 ‘a’s, 

then flatten the opposite side, before 
opening it out from the middle.
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Exploring  your 
hexahexaflexagon

There are six different coloured 
sides to find on the flexagon. The 
colours you reveal will depend on 
where you flex it – that is, which 
triangles you pinch together. On 
some coloured sides it only works 
if you pinch in some places not 
others. The flexagon is marked with 
letters a, b and c. Places to pinch 
that work have two identical letters 
together one either side of a fold. 

If you started on the yellow side and don’t 
turn the flexagon over, all the sides are 
marked by sets of 6 numbers round the 
centre of the hexagon. The original yellow 
side is marked 3. When you first folded 
it you ended up with a blue side marked 
2. As you explore you will find a second 
yellow ‘side’ with different numbers in the 
middle. Other colours have two versions 
with different numbers too. All together 
there are 6 different colours, but 9 sets 
of numbers (0-8) that can appear in the 
middle, so 9 different states the top of the 
flexagon can appear in.

Using Graphs  
to Explore

www.cs4fn.org  11

A state is just a unique 
place you can be in a 
system. Each state is 
different in some way 
from any other state in 
that system.
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Mapping  your 
hexahexaflexagon

If you’ve just explored randomly, you 
probably haven’t found all the flexagon’s 
sides. Some are easier to get to than 
others so you’ve probably been back to 
some sides a lot. Sides 7, 8 and 0 are 
harder to find. Can you work out why?

The great explorers didn’t just wander 
aimlessly around new continents looking 
at rivers, forests and waterfalls. They 
drew maps as they went. To explore 
the flexagon thoroughly, and to make 
sure you don’t forget what you discover, 
you need a map too.  A map is just an 
abstraction of the world. It is a simplified 
representation of something of interest like 
rivers and waterfalls, railways and stations 
or mountains and valleys. When choosing 
an abstraction you decide to include 
important features (roads say) while 
ignoring others (perhaps rivers). 

Let’s draw a map as we explore the 
flexagon. What matters are the colours and 
numbers of the different sides, and how 
you can get from one to the next. We will 
abstract away everything else in our map.

Get a large piece of paper and draw a 
circle to stand for the current face up side 
of the flexagon. Perhaps you are on yellow 
side 3, so put a 3 in the circle (like naming 
stations on the underground map). Now 
flex the flexagon and see where you end 
up. Perhaps blue side 2. Draw another 
circle with a 2 in it nearby and then draw 
an arrow between them to show you can 
get from side 3 to side 2. Label the edges 
with the letter showing where you flexed it. 
We pinched the flexagon at a to get from 
side 3 to side 2 so we write that above the 
arrow. If we are ever at side 3 again we will 
know from our map what to do to get to 
side 2.

Using Graphs  
to Explore

The start of a simple map of how to 
move around a flexagon

a
23



Graphs  that  
are  maps

As you flex the flexagon, moving from  
side to side, draw new circles for each 
new side. Put arrows between them 
showing how you got there. If you return 
to a side you’ve already seen, then the 
arrow should point back to the original 
circle. Don’t draw a new one.

Computer scientists have a special name 
for this kind of map: a graph. It’s a different 
thing to the graphs mathematicians draw. 
To a computer scientist a graph is just 
a series of circles, called nodes, and a 
series of lines connecting them called 
edges. The nodes represent places to visit 

and the edges show how you can move 
between those nodes. An underground 
or rail network map is a graph, where the 
stations are the nodes and the railway lines 
connecting them the edges. A railway map 
ignores (abstracts away from) the exact 
positions and distances between stations  
to focus on how they are connected. 

For a flexagon the places you can visit – 
the nodes - are the different numbered 
sides of the flexagon. The edges show how 
you can get from side to side. We’ve used 
arrows as edges of the graph to show the 
direction you can travel along them. This  
is called a directed graph.
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An  algorithm   
for  exploration

Our map helps us explore as we can see 
where we have been, but if we explore 
at random then we still might not find 
all the sides. We are also likely to waste 
a lot of time going round in circles, a bit 
like wandering round a maze. You can 
actually represent a maze as a graph too, 
with nodes for junctions and edges the 
paths between them. Exploring a maze 
and our flexagon generalise to the same 

kind of problem once we turn them in to 
graphs. We are creating an abstraction of 
them using a graph as representation. 

So we need a way to make sure we do visit 
every part of the flexagon and don’t waste 
time going round in circles – we need an 
algorithm to build the graph. At every node 
(or side of the flexagon), we need to see 
where each possible action takes us. That 
is, we need to explore all the edges from it 
to see where they lead.

Using Graphs  
to Explore

14  www.cs4fn.org



Exploring  with  
a  ‘To Do’ list

We need a way to keep track of which 
parts of the graph are unexplored. We can 
do that by keeping a to-do list of nodes 
with unexplored edges. As we explore the 
flexagon, adding new nodes and edges to 
our graph, we can update our list. 

We start at any side of the flexagon, 
drawing it as the first node of our graph. 
It has as yet unexplored places to flex so 
we add that node to our to-do list too along 
with which actions (flexing at a, b or c) we 
have yet to explore. We pick any and try 
it, crossing it off the list for that node. We 
update the graph with the new edge. We 
are now at a new side of the flexagon, so 
we do the same from there adding each 
node to our list if it isn’t already there.

Eventually we will get to a node where 
we have crossed off all the actions. That 
means it is fully explored. What then? 

There are two possibilities. If our to-do list 
is empty then we have finished. We have 
fully explored the flexagon from that start 
point. The other possibility is that there is 
something still on our to-do list. We then 
need to use the graph we’ve created to 
navigate to one of those unexplored nodes 
and carry on.

This will work as long as there are no dead-
end sections of the graph where the only 
way to return to the start is to go back the 
way you came. Is that true for the graph of 
a flexagon? If so you would need to either 
flex the flexagon backwards to undo the 
moves made, or dismantle and re-glue it 
back to the start. That is the equivalent of 
being teleported out of a maze back to the 
entrance to try again!

Once you have drawn the full graph for the 
flexagon, draw a tidied version of it, so the 
lines don’t cross and the nodes are nicely 
spread out. A full graph for the flexagon is 
given overleaf.

www.cs4fn.org  15
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Drawing  a  program

Suppose we want to create a virtual 
version of a hexahexaflexagon. 
We want a program that displays 
an image of a flexagon’s side. 
When we touch an edge it should 
switch to the correct new side as 
though it were a real flexagon. We 
could write a program to do this 
from scratch. Or we could just use 
the graph we already have as a 
program! 

Graphs are used to represent ‘places’ 
showing how you can move between them. 
This is a form of computation, and that 
means graphs can be turned in to a kind  
of program. We call it a finite state 
machine. They describe a machine that 
moves from state to state, where the states 
are just virtual versions of whatever the 
nodes represent. For our flexagon the 
states are the different numbered sides. 
The states are linked by transitions. They 
are the edges of the graph and tell you how 
you get from one state to another. 

Each transition has a label that tells you 
what you have to do to take it – the actions. 
They act like the inputs to a program. The 
possible actions that label the transitions 
in the graph are called the alphabet of 
the finite state machine. The alphabet for 
our flexagon is the set of letters {a, b, c} 
as those are the labels used to mark flex 
points.

A finite state machine also needs a specific 
place to start – the initial state. We will use 
a black dot with an arrow to point to it. 

Finally, each state of a finite state machine 
can output something. The output for our 
virtual flexagon could be a picture of the 
flexagon that is to be displayed when the 
flexagon is in that state. To keep things 
simple here, we will just assume the 
output is the current colour of the flexagon, 
together with its number. We will colour the 
states with the colour to be output.

Finite State  
Machines

You can code just by
drawing a graph.

www.cs4fn.org  17
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An  example  finite 
state  machine

The fragment of the finite state machine 
for our flexagon below says that if the 
machine is in state 3 (displaying a yellow 
side) and b is input then the flexagon will 
move to state 4 where it will display an 
orange side. From state 4, if an a is input, 
it will move to state 8, outputting red. If c 
is then input it will return to the original 
state. An a rather than a b from that state 
will take you to a so far unexplored state. 

Quickly creating simulations
A finite state machine is a program because 
it describes actions that can be taken and 
the computations done as a result. The 
computations are just changes to the state.

We can write a one-off program that 
executes finite state machines, called a 
finite state machine simulator. Then if we 
give it the description of any finite state 
machine, we have a working simulation of 
whatever the finite state machine describes.

The simulator first sets the state to the start 
state. Then as keys are pressed it follows 
the transitions changing the state to the 
new state, showing the output on its display. 
The labels on the transitions correspond 
to the keys being pressed and show which 
transition to take.

If the simulator combines the finite state 
machine with an image of whatever it is 
describing we can make the simulation’s 
output realistic. For example, we can link 
pictures of each side of the flexagon to the 
output of the finite state machine, displaying 
them as the output. We can also link parts 
of the image displayed to actions, so that, 
for example, when we touch the picture of 
a button the linked transition happens. With 
a flexagon, we can make touching a pinch 
point flex the flexagon there. We then have 
a working simulation of the flexagon.

Finite State  
Machines

a 84

3

c

a

b

Part of the finite state machine  
for a flexagon, showing the 
starting state.
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The finite state machine simulator, 
pvsioweb, (www.cs4fn.org/pvsioweb/) 
is an example of a research toolset that 
does this. Created to help design medical 
devices, it allows finite state machines to 
be drawn like this and then quickly turns 
them in to working simulations. It allows 
much more, as it is linked to powerful 
mathematical tools too…

Checking Properties

Once we have created the finite state 
machine simulation of our flexagon, we 
can ignore the flexagon itself and explore 
it further using its model. We can do a 
similar thing with all sorts of phenomena 
we want to investigate – it is an alternative 
way to do science. Create a model of 
the phenomenon (like our finite state 
machine) then explore it. Computational 
models are a useful way to understand  
the world, from how our flexagon works  
to the way cancer spreads through cells. 

Using the model, we can answer 
questions like: what is the quickest 
sequence of actions from the start state 
that will get us to state 4, or how many 
steps does it take to get from state 5 to 
state 1? We can also check more general 
properties like whether there are any 
dead ends where we would get stuck, or 
whether we can always get back to the 
start. We already saw how important the 
last property is if we are trying to visit 
every state of the finite state machine.

We can check these and other properties 
by executing the simulation. For a large 
machine that may take an impractically 
long time. A better way is to use some 
logical thinking to check properties of 
the model. We don’t have to do this by 
hand. We can devise algorithms and 
write programs that check the properties 
we are interested in automatically. If we 
write them to work on finite state machine 
models and build them in to our finite 
state machine simulator, then they can 
be used to check these kind of properties 
automatically for any machine we create. 
This allows us to check the properties of 
the finite state machine in a really rigorous 
way (as we did to explore and create it in 
the first place). 

For our flexagon, the finite state machine 
is small. So once we have the complete 
graph we can easily see why we kept 
returning to sides 1, 2 and 3, for example. 
Those states form a central triangle with 
the other states branching off but always 
returning. Whichever way you go, you 
always end up at one of those three sides 
within at most three flexes. Sides 7, 8 and 
0 on the other hand are harder to get to. 

By creating the finite state machine 
version – the computational model – 
we are able to better understand the 
flexagon.
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Prototyping  a 
persuasive  game

Finite state machines are powerful 
tools in the computational thinking 
toolkit. Designers use them to mock 
up early versions of a program 
so they can check it will work 
how they expect - very much like 
the way film makers create a 
storyboard of a film early on.
Imagine you are designing a new 
‘persuasive game’ - a game that helps 
make people aware of an issue you care 
about. The people who play it will learn 
what its like to be a child trying to escape a 
war torn country, perhaps. You want to get 
it right. The more people who play it the 
more who will learn about the problems 
as they work through the game’s story, by 
making decisions. Each decision leads 
them to a new screen with a new situation 
to find themselves in.

Ideally you want a quick way to get a rough 
working version of the program to try it out 
and check your ideas, or show to people to 
get feedback.You don’t want to put in lots 
of work, coding a slick production version, 
only to then find it has a fundamental 
flaw. You might sketch ideas for what the 
screens will look like at different points in 
the story. But you also need to plan out 
how the different decisions the players 
make will move you around the story. 

How could you do this? One way would 
be to create a finite state machine of 
the game. This time the states are the 
different situations in the game. Decisions 
correspond to the transitions. The outputs 
are your sketches for the different screens. 
Simulating this finite state machine will 
quickly give you a working prototype of  
the game.

Finite state machines are also used as 
a way to say what a program, gadget, 
or even set of webpages should do 
at an early stage – to give a precise 
mathematical specification of what is 
required. The programmers creating the 
production version can then work from 
that description to ensure they program 
the right thing. Finite state machine 
descriptions can be given for just specific 
parts, or the whole system. 

After giving the prototype of your 
persuasive game to different people you 
might realise some parts of the game don’t 
work. After creating and trialling a whole 
series of prototypes, you eventually decide 
on a final version that works well. Now 
when you start to program that slick, fast 
version, you use the finite state machine 
as your guide as to what should happen in 
the real game.

Graphs for real



Manually set  
that Alarm

Suppose you have designed a digital watch 
with lots of different features like multiple 
timers, alarms, stop-watches, lap times and 
so on. It would be useful to be sure there 
wasn’t a mode the owner could get it into 
that there was no way out of. We wouldn’t 
want to find that just because we decided to 
look at the date it was impossible to ever see 
the time again.Using a finite state machine 
version we would be able to check. 

Finite state machine descriptions are 
particularly useful for describing how you 
use a gadget: what sequences of buttons 
you must press (the actions) to do different 
things. This is exactly what you need in 
an instruction manual. Just as it helped 
us see how the flexagon works, one could 
help us understand how our new watch 
works. Finite state machine diagrams are 
often given in the instruction manuals of 
gadgets like digital watches and central 
heating systems, exactly for that reason. If 

the programmers used one when designing 
it, then the instruction manual could be 
automatically generated from that finite 
state machine, ensuring that it is right.

I just bought a digital watch. The sales 
assistant in the shop set the time but then 
couldn’t work out how to set the date, even 
with the written instructions. That in itself 
suggests the watch isn’t well designed 
and neither is the manual! Perhaps the 
programmers should have used a finite 
state machine. 

With my new watch, even when you have 
worked out how to do things, it is hard to 
remember what to do the next time. We 
need some computational thinking! As I 
explore the watch pressing buttons to work 
out how to set the date, I draw the finite 
state machine. Once I have fully explored it 
I have a map. Not only can I now see why it 
is so difficult to use, if I keep my map safe 
then when I need to reset the date again (or 
do anything else), I can just follow my map.

Graphs for real
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Life and death

Of course all of this applies to any program 
we might want to create, and to anything we 
can represent with a finite state machine. 
That includes gadgets that people’s lives 
depend on.

Suppose you were designing a machine 
for accident and emergency staff to use 
when patients arrive at the hospital – a 
resuscitator perhaps or a machine to 
quickly give them painkillers or lost blood. 
You want to be sure it is easy to use. You 
want the instruction manual to be correct. 
You want to be sure that certain properties 
hold. For example, often the machine 
will be left in a random state during an 
emergency. It would be good to know, when 

the next patient arrives, that whatever state 
it is in you can always get back to the start 
state quickly. Ideally this should involve 
doing exactly the same thing, whatever 
state the machine has been left in. It 
should be easy and obvious without special 
training. A designer can check important 
properties like that at the outset based on 
the finite state machine model of the device. 
Similarly, regulators, those charged with 
making sure new machines are safe, could 
check the same properties before they allow 
the machine to be sold in a similar way.

That is exactly how finite state machines are 
now being used…helping ensure machines 
are safe, saving lives.

www.cs4fn.org  23
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Representations 
and abstraction

Choosing a good representation of a 
problem makes a big difference to how 
easy it is to solve. We chose a graph 
representation for the flexagon because it 
is about moving between ‘places’. There 
were more decisions to make though – 
what should the nodes and edges be? We 
chose as nodes the different numbers in 
the centre of the sides and edges showing 
how we can move from one of these ‘sides’ 
to another. We could have chosen the six 
different colours as our nodes, but that 
wouldn’t have worked. We wouldn’t have 
been able to tell the difference between 
different states of the flexagon that have 
the same colours. Choosing the right 
representation for a problem matters. 

Choosing a representation is actually all 
about abstraction: hiding the right detail. 
Which features of the flexagon matter 
and which don’t for our problem at hand? 
The fact that it is made of paper? That 
it is made of triangles in the shape of 
hexagons? That matters if our problem 
is to make a flexagon, but not to explore 
it. We can abstract the material and the 
shapes away. All that we need to worry 
about are the different states and the way 
we can move between them. Choosing 
the right abstraction for the states matters 
as we saw. If we use the colours as our 
abstraction of states then we have lost too 
much information. What matters is not just 
which triangles are face up, but what is in 
the centre of the hexagon.

Computational 
Thinking
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Algorithmic and 
logical thinking 

Making a flexagon and flexing one are 
algorithms. Writing instructions of how to 
make one for others involves algorithmic 
thinking. We could explore the flexagon at 
random, but to do it well we need another 
algorithm. We use algorithmic thinking there 
too. If we know an algorithm for exploring 
a maze, then we can use it to explore a 
flexagon too if they are both represented as 
graphs. We are using pattern matching and 
generalisation to do that. 

Any situation where we are exploring 
something by moving from place to 
place can be represented as a finite state 
machine. That holds whatever we mean by 
a ‘place’ (a flexagon’s side, a junction in a 
maze, a tube station, a mode of a gadget, 
a web page, and so on) or how to ‘move’ 
between them (flexing, walking, get on a 
train, pressing a button, clicking a link, …). 
That is more generalisation.

In coming up with an algorithm we are 
doing logical thinking: thinking clearly 
through the steps of how to explore the 
flexagon so we visit it all. We needed more 
logical thinking to decide how to draw the 
graph – what to use as nodes for example – 
and in thinking through whether properties 
hold true of the graph.

A finite state machine is a kind of 
computational model. We can simulate the 

actual system using it. We can then explore 
the flexagon without touching an actual 
flexagon, just using our finite state machine 
model. The same applies whether that 
system is a flexagon, a digital watch or even 
the London Underground. 

General tools we write for doing things with 
finite state machines (simulating them, 
checking properties, and so on) will work 
for all these situations (generalisation at 
work again). Once we have a computational 
model we can do more than just simulate 
it. We can check properties of it, like 
finding the shortest distances between 
two points, checking if there are any dead 
ends we will get stuck in, and so on. Our 
flexagon is small enough that we can 
answer those questions just looking at the 
graph. For more complicated systems, like 
the autopilot of a plane we would need 
algorithms to check the properties, visiting 
each state and checking the property held 
there, automatically. If we create a general 
tool for simulating or checking properties 
of finite state machines we can use it for 
anything we model as one.

Finite state machines also give a way to 
rapidly create early versions of programs 
so we can check them, trialling lots of 
ideas and generating the program before 
we commit to creating the final version. 
They can even then be used to generate 
instruction manuals that are guaranteed to 
exactly match the final program.

Computational 
Thinking
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More to do 

Flexagon Birthday Cards
You can have lots of fun with flexagons if 
you are creative. Add pictures to the sides 
and you can create a puzzle that involves 
finding a hidden picture. You could even 
create a hexahexaflexagon birthday card 
with hidden messages to find.

The other side of the flexagon…
We have completely ignored the other 
side of the flexagon! Turn it over and some 
sides have no numbers in the centre! 
There is a whole new world to explore 
by flexing it with that side up. Do any of 
the states of that side overlap with those 
we already know about? If they do how 
do we tell them apart? Perhaps we will 
need a different abstraction once we start 
drawing the graph? If so what to use? Is 
it possible to pass through all the sides 
without turning the flexagon over? It’s time 
to create a finite state machine for the 
flexagon as a whole.

All in all, graphs and 
finite state machines  
are incredibly useful…
there is a lot of 
computational thinking  
in a hexahexaflexagon!
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