
Computational
Thinking:
HexaHexaFlexagon
Automata

A Computer Science for Fun / Teaching London Computing / CHI+MED Special

Explore a strange
paper puzzle

Code it by drawing
a ‘map’

FLAP 1

FLAP 2

3

3

3

3

3

3

0

0

0

0

0

0

1

1

1

1

1

1

7
2

7

7

7

7

2

2

2

2

2
8

8

8

8

8

8

7

5

4

4
4

4
4

5
4

5
5

5
5

6
6

6
6

6
6

a

a

a

a

a

a

b

a

c b
a

ab
c

ac

c b
a

bcb

a

c

c

2 www.cs4fn.org

You make a red and yellow
hexahexaflexagon by folding and
gluing a multicoloured paper strip
in a special way. Once made you
start to explore it. As you fold and
unfold it, you magically reveal
new sides as the flexagon changes
colour.
You create a map as you explore it. It’s
like a tube map. Circles are places you
find. Lines show the places you can move
between by folding and unfolding the
flexagon.

This special kind of map is called a finite
state machine. Even though the map is just
a sketch of circles and lines it is also a kind
of program. It describes the computations
involved in flexing the flexagon.

By drawing the map in a special finite state
machine simulator, you have created a
virtual version of the hexahexaflexagon.
You can now explore it using the simulation
you have created.

Using the same idea you can quickly
create early prototypes of the user
interfaces for any program you are
developing, to check your ideas work. You
can show it to the people who will use it.
That way you can check they find it easy
to use, don’t make mistakes and never get
confused about what to do next. It helps
you make sure that your design works.

By quickly creating an early finite state
machine version of a user interface you
can also check other things about it, like
whether you can always get back to the
main home screen in one button press,
or WON’T get stuck with no way out.

This really matters if people’s lives depend
on the program you are creating - if it
is a heart monitor to keep people alive
perhaps, or controls a roller coaster, or
even if it is the shutdown system of a
nuclear power plant.

Finite state machines are powerful tools
in the computational thinking toolbox.

From paper
puzzles to
saving lives

www.cs4fn.org 3

4 www.cs4fn.org

FLAP 1

FLAP 2

3

3

3

3

3

3

0

0

0

0

0

0

1

1

1

1

1

1

7

2

7

7

7

7

2

2

2

2

2
8

8

8

8

8

8

7

5

4

4
4

4
4

5

4

5
5

5
5

6
6

6
6

6
6

a

a

a

a

a

a

b

a

c
b

a

a
b

c

a
c

c
b

a

b
c

b

a

c

c

A hexahexaflexagon template

4 www.cs4fn.org

Hexahexaflexagons

Hexahexaflexagons are strange
folded objects that have hidden
sides. At any time only 2 sides are
visible, but a hexahexaflexagon
actually has six sides. Some sides
can appear in more than one state
with a different centre.

Let’s start by making one. Here is
how to do it (or watch the video at
www.cs4fn.org/hexahexaflexagon/).

Making a hexahexaflexagon:
the algorithm
1. Download a copy of the coloured

hexahexaflexagon template from
www.cs4fn.org/hexahexaflexagon/

2. Print an enlarged, coloured version
on to A3 paper.

3. Cut round the outside of the strip
of triangles.

4. Fold carefully down the centre line.

5. Glue the two white sides back-to-back
down the full length of the strip:

• The back of triangle FLAP 1 should
be glued to the back of the end-most
ORANGE triangle.

• At the other end the back of triangle
FLAP 2 should be stuck to the back
of the end RED triangle.

Making a
Flexagon

www.cs4fn.org 5

Download a copy of the
multicoloured hexahexaflexagon

template from www.cs4fn.org/
hexahexaflexagon/

6 www.cs4fn.org

6. Starting from the FLAP 1 end, fold the
first purple triangle against its adjacent
purple one, then green against green,
orange against orange, and so on
down the strip. Make sure you fold as
precisely as you can along the lines,
so that triangles fold exactly over each
other. You should end up with a shorter
folded strip that looks like the one below.

7. Do a similar thing with the result.
Starting at the FLAP1 end, fold the
first blue triangle against the adjacent
blue triangle. This brings three yellow
triangles together as below.

Making a
Flexagon

FL
AP

 1

After the first round of folding you
have a strip looking like this.

With another fold it starts to make
a hexagon of yellow triangles.

FLAP 1

FLAP 2

www.cs4fn.org 7

8. Now fold the next two blue triangles
together, back-to-back in the same
way. You should now have five yellow
triangles together in a hexagon shape
with the next blue triangle.

9. Fold the final two blue triangles together,
tucking FLAP 2 in, so it is under the
hexagon you have made, leaving a
hexagon with FLAP 1 sticking out.

Continue folding the same colours back-to-
back to fill out the yellow hexagon.

FLAP 1

FLAP 1

After one more fold, FLAP 2
is tucked under the hexagon.

8 www.cs4fn.org

Making a
Flexagon

10. Fold FLAP1 back and glue it to FLAP 2
so the faces with these words are now
glued together. You should be left with
a yellow hexagon of triangles on top.
Turn it over and you should have
a similar red hexagon of triangles.

The final hexahexaflexagon is yellow
on one side and red on the other.

You have now made a
hexahexaflexagon…
time to flex it.

www.cs4fn.org 9

Flexing your
hexahexaflexagon

Your flexagon has a yellow side and a
red side. You can reveal new, different
coloured sides by ‘flexing’ it: folding it up
and unfolding it again. Here’s how.

Flexing a hexahexaflexagon:
the algorithm
1. Start with the yellow side up. Two of the

yellow triangles have a letter ‘a’ on them.
Pinch those two triangles together.

2. Opposite them are two yellow triangles
with ‘b’ marked on them. While still
pinching the ‘a’ s, flatten the ‘b’ sides
towards them so the flexagon makes a
Y shape from above as in diagram.

3. Open the flexagon up from the middle of
the Y, like a flower bud opening. A new
blue side will be revealed. The yellow
side has flipped to the back and the
original red side has disappeared.

4. Keep doing this – pinching two sides
together, flattening the opposite side and
opening up from the middle and you will
reveal more coloured sides. Explore!

b

b

a

a
b

a

a

b

pinch

pinch

flatten

Flex a flexagon by pinching two
sides together between the 2 ‘a’s,

then flatten the opposite side, before
opening it out from the middle.

10 www.cs4fn.org

Exploring your
hexahexaflexagon

There are six different coloured
sides to find on the flexagon. The
colours you reveal will depend on
where you flex it – that is, which
triangles you pinch together. On
some coloured sides it only works
if you pinch in some places not
others. The flexagon is marked with
letters a, b and c. Places to pinch
that work have two identical letters
together one either side of a fold.

If you started on the yellow side and don’t
turn the flexagon over, all the sides are
marked by sets of 6 numbers round the
centre of the hexagon. The original yellow
side is marked 3. When you first folded
it you ended up with a blue side marked
2. As you explore you will find a second
yellow ‘side’ with different numbers in the
middle. Other colours have two versions
with different numbers too. All together
there are 6 different colours, but 9 sets
of numbers (0-8) that can appear in the
middle, so 9 different states the top of the
flexagon can appear in.

Using Graphs
to Explore

www.cs4fn.org 11

A state is just a unique
place you can be in a
system. Each state is
different in some way
from any other state in
that system.

12 www.cs4fn.org

Mapping your
hexahexaflexagon

If you’ve just explored randomly, you
probably haven’t found all the flexagon’s
sides. Some are easier to get to than
others so you’ve probably been back to
some sides a lot. Sides 7, 8 and 0 are
harder to find. Can you work out why?

The great explorers didn’t just wander
aimlessly around new continents looking
at rivers, forests and waterfalls. They
drew maps as they went. To explore
the flexagon thoroughly, and to make
sure you don’t forget what you discover,
you need a map too. A map is just an
abstraction of the world. It is a simplified
representation of something of interest like
rivers and waterfalls, railways and stations
or mountains and valleys. When choosing
an abstraction you decide to include
important features (roads say) while
ignoring others (perhaps rivers).

Let’s draw a map as we explore the
flexagon. What matters are the colours and
numbers of the different sides, and how
you can get from one to the next. We will
abstract away everything else in our map.

Get a large piece of paper and draw a
circle to stand for the current face up side
of the flexagon. Perhaps you are on yellow
side 3, so put a 3 in the circle (like naming
stations on the underground map). Now
flex the flexagon and see where you end
up. Perhaps blue side 2. Draw another
circle with a 2 in it nearby and then draw
an arrow between them to show you can
get from side 3 to side 2. Label the edges
with the letter showing where you flexed it.
We pinched the flexagon at a to get from
side 3 to side 2 so we write that above the
arrow. If we are ever at side 3 again we will
know from our map what to do to get to
side 2.

Using Graphs
to Explore

The start of a simple map of how to
move around a flexagon

a
23

Graphs that
are maps

As you flex the flexagon, moving from
side to side, draw new circles for each
new side. Put arrows between them
showing how you got there. If you return
to a side you’ve already seen, then the
arrow should point back to the original
circle. Don’t draw a new one.

Computer scientists have a special name
for this kind of map: a graph. It’s a different
thing to the graphs mathematicians draw.
To a computer scientist a graph is just
a series of circles, called nodes, and a
series of lines connecting them called
edges. The nodes represent places to visit

and the edges show how you can move
between those nodes. An underground
or rail network map is a graph, where the
stations are the nodes and the railway lines
connecting them the edges. A railway map
ignores (abstracts away from) the exact
positions and distances between stations
to focus on how they are connected.

For a flexagon the places you can visit –
the nodes - are the different numbered
sides of the flexagon. The edges show how
you can get from side to side. We’ve used
arrows as edges of the graph to show the
direction you can travel along them. This
is called a directed graph.

www.cs4fn.org 13

An algorithm
for exploration

Our map helps us explore as we can see
where we have been, but if we explore
at random then we still might not find
all the sides. We are also likely to waste
a lot of time going round in circles, a bit
like wandering round a maze. You can
actually represent a maze as a graph too,
with nodes for junctions and edges the
paths between them. Exploring a maze
and our flexagon generalise to the same

kind of problem once we turn them in to
graphs. We are creating an abstraction of
them using a graph as representation.

So we need a way to make sure we do visit
every part of the flexagon and don’t waste
time going round in circles – we need an
algorithm to build the graph. At every node
(or side of the flexagon), we need to see
where each possible action takes us. That
is, we need to explore all the edges from it
to see where they lead.

Using Graphs
to Explore

14 www.cs4fn.org

Exploring with
a ‘To Do’ list

We need a way to keep track of which
parts of the graph are unexplored. We can
do that by keeping a to-do list of nodes
with unexplored edges. As we explore the
flexagon, adding new nodes and edges to
our graph, we can update our list.

We start at any side of the flexagon,
drawing it as the first node of our graph.
It has as yet unexplored places to flex so
we add that node to our to-do list too along
with which actions (flexing at a, b or c) we
have yet to explore. We pick any and try
it, crossing it off the list for that node. We
update the graph with the new edge. We
are now at a new side of the flexagon, so
we do the same from there adding each
node to our list if it isn’t already there.

Eventually we will get to a node where
we have crossed off all the actions. That
means it is fully explored. What then?

There are two possibilities. If our to-do list
is empty then we have finished. We have
fully explored the flexagon from that start
point. The other possibility is that there is
something still on our to-do list. We then
need to use the graph we’ve created to
navigate to one of those unexplored nodes
and carry on.

This will work as long as there are no dead-
end sections of the graph where the only
way to return to the start is to go back the
way you came. Is that true for the graph of
a flexagon? If so you would need to either
flex the flexagon backwards to undo the
moves made, or dismantle and re-glue it
back to the start. That is the equivalent of
being teleported out of a maze back to the
entrance to try again!

Once you have drawn the full graph for the
flexagon, draw a tidied version of it, so the
lines don’t cross and the nodes are nicely
spread out. A full graph for the flexagon is
given overleaf.

www.cs4fn.org 15

a 84

3

c

a

b

b 62

7
ac

c 10

5
a

a

a
b

16 www.cs4fn.org

Drawing a program

Suppose we want to create a virtual
version of a hexahexaflexagon.
We want a program that displays
an image of a flexagon’s side.
When we touch an edge it should
switch to the correct new side as
though it were a real flexagon. We
could write a program to do this
from scratch. Or we could just use
the graph we already have as a
program!

Graphs are used to represent ‘places’
showing how you can move between them.
This is a form of computation, and that
means graphs can be turned in to a kind
of program. We call it a finite state
machine. They describe a machine that
moves from state to state, where the states
are just virtual versions of whatever the
nodes represent. For our flexagon the
states are the different numbered sides.
The states are linked by transitions. They
are the edges of the graph and tell you how
you get from one state to another.

Each transition has a label that tells you
what you have to do to take it – the actions.
They act like the inputs to a program. The
possible actions that label the transitions
in the graph are called the alphabet of
the finite state machine. The alphabet for
our flexagon is the set of letters {a, b, c}
as those are the labels used to mark flex
points.

A finite state machine also needs a specific
place to start – the initial state. We will use
a black dot with an arrow to point to it.

Finally, each state of a finite state machine
can output something. The output for our
virtual flexagon could be a picture of the
flexagon that is to be displayed when the
flexagon is in that state. To keep things
simple here, we will just assume the
output is the current colour of the flexagon,
together with its number. We will colour the
states with the colour to be output.

Finite State
Machines

You can code just by
drawing a graph.

www.cs4fn.org 17

18 www.cs4fn.org

An example finite
state machine

The fragment of the finite state machine
for our flexagon below says that if the
machine is in state 3 (displaying a yellow
side) and b is input then the flexagon will
move to state 4 where it will display an
orange side. From state 4, if an a is input,
it will move to state 8, outputting red. If c
is then input it will return to the original
state. An a rather than a b from that state
will take you to a so far unexplored state.

Quickly creating simulations
A finite state machine is a program because
it describes actions that can be taken and
the computations done as a result. The
computations are just changes to the state.

We can write a one-off program that
executes finite state machines, called a
finite state machine simulator. Then if we
give it the description of any finite state
machine, we have a working simulation of
whatever the finite state machine describes.

The simulator first sets the state to the start
state. Then as keys are pressed it follows
the transitions changing the state to the
new state, showing the output on its display.
The labels on the transitions correspond
to the keys being pressed and show which
transition to take.

If the simulator combines the finite state
machine with an image of whatever it is
describing we can make the simulation’s
output realistic. For example, we can link
pictures of each side of the flexagon to the
output of the finite state machine, displaying
them as the output. We can also link parts
of the image displayed to actions, so that,
for example, when we touch the picture of
a button the linked transition happens. With
a flexagon, we can make touching a pinch
point flex the flexagon there. We then have
a working simulation of the flexagon.

Finite State
Machines

a 84

3

c

a

b

Part of the finite state machine
for a flexagon, showing the
starting state.

www.cs4fn.org 19

The finite state machine simulator,
pvsioweb, (www.cs4fn.org/pvsioweb/)
is an example of a research toolset that
does this. Created to help design medical
devices, it allows finite state machines to
be drawn like this and then quickly turns
them in to working simulations. It allows
much more, as it is linked to powerful
mathematical tools too…

Checking Properties

Once we have created the finite state
machine simulation of our flexagon, we
can ignore the flexagon itself and explore
it further using its model. We can do a
similar thing with all sorts of phenomena
we want to investigate – it is an alternative
way to do science. Create a model of
the phenomenon (like our finite state
machine) then explore it. Computational
models are a useful way to understand
the world, from how our flexagon works
to the way cancer spreads through cells.

Using the model, we can answer
questions like: what is the quickest
sequence of actions from the start state
that will get us to state 4, or how many
steps does it take to get from state 5 to
state 1? We can also check more general
properties like whether there are any
dead ends where we would get stuck, or
whether we can always get back to the
start. We already saw how important the
last property is if we are trying to visit
every state of the finite state machine.

We can check these and other properties
by executing the simulation. For a large
machine that may take an impractically
long time. A better way is to use some
logical thinking to check properties of
the model. We don’t have to do this by
hand. We can devise algorithms and
write programs that check the properties
we are interested in automatically. If we
write them to work on finite state machine
models and build them in to our finite
state machine simulator, then they can
be used to check these kind of properties
automatically for any machine we create.
This allows us to check the properties of
the finite state machine in a really rigorous
way (as we did to explore and create it in
the first place).

For our flexagon, the finite state machine
is small. So once we have the complete
graph we can easily see why we kept
returning to sides 1, 2 and 3, for example.
Those states form a central triangle with
the other states branching off but always
returning. Whichever way you go, you
always end up at one of those three sides
within at most three flexes. Sides 7, 8 and
0 on the other hand are harder to get to.

By creating the finite state machine
version – the computational model –
we are able to better understand the
flexagon.

20 www.cs4fn.org

www.cs4fn.org 21

Prototyping a
persuasive game

Finite state machines are powerful
tools in the computational thinking
toolkit. Designers use them to mock
up early versions of a program
so they can check it will work
how they expect - very much like
the way film makers create a
storyboard of a film early on.
Imagine you are designing a new
‘persuasive game’ - a game that helps
make people aware of an issue you care
about. The people who play it will learn
what its like to be a child trying to escape a
war torn country, perhaps. You want to get
it right. The more people who play it the
more who will learn about the problems
as they work through the game’s story, by
making decisions. Each decision leads
them to a new screen with a new situation
to find themselves in.

Ideally you want a quick way to get a rough
working version of the program to try it out
and check your ideas, or show to people to
get feedback.You don’t want to put in lots
of work, coding a slick production version,
only to then find it has a fundamental
flaw. You might sketch ideas for what the
screens will look like at different points in
the story. But you also need to plan out
how the different decisions the players
make will move you around the story.

How could you do this? One way would
be to create a finite state machine of
the game. This time the states are the
different situations in the game. Decisions
correspond to the transitions. The outputs
are your sketches for the different screens.
Simulating this finite state machine will
quickly give you a working prototype of
the game.

Finite state machines are also used as
a way to say what a program, gadget,
or even set of webpages should do
at an early stage – to give a precise
mathematical specification of what is
required. The programmers creating the
production version can then work from
that description to ensure they program
the right thing. Finite state machine
descriptions can be given for just specific
parts, or the whole system.

After giving the prototype of your
persuasive game to different people you
might realise some parts of the game don’t
work. After creating and trialling a whole
series of prototypes, you eventually decide
on a final version that works well. Now
when you start to program that slick, fast
version, you use the finite state machine
as your guide as to what should happen in
the real game.

Graphs for real

Manually set
that Alarm

Suppose you have designed a digital watch
with lots of different features like multiple
timers, alarms, stop-watches, lap times and
so on. It would be useful to be sure there
wasn’t a mode the owner could get it into
that there was no way out of. We wouldn’t
want to find that just because we decided to
look at the date it was impossible to ever see
the time again.Using a finite state machine
version we would be able to check.

Finite state machine descriptions are
particularly useful for describing how you
use a gadget: what sequences of buttons
you must press (the actions) to do different
things. This is exactly what you need in
an instruction manual. Just as it helped
us see how the flexagon works, one could
help us understand how our new watch
works. Finite state machine diagrams are
often given in the instruction manuals of
gadgets like digital watches and central
heating systems, exactly for that reason. If

the programmers used one when designing
it, then the instruction manual could be
automatically generated from that finite
state machine, ensuring that it is right.

I just bought a digital watch. The sales
assistant in the shop set the time but then
couldn’t work out how to set the date, even
with the written instructions. That in itself
suggests the watch isn’t well designed
and neither is the manual! Perhaps the
programmers should have used a finite
state machine.

With my new watch, even when you have
worked out how to do things, it is hard to
remember what to do the next time. We
need some computational thinking! As I
explore the watch pressing buttons to work
out how to set the date, I draw the finite
state machine. Once I have fully explored it
I have a map. Not only can I now see why it
is so difficult to use, if I keep my map safe
then when I need to reset the date again (or
do anything else), I can just follow my map.

Graphs for real

22 www.cs4fn.org

Life and death

Of course all of this applies to any program
we might want to create, and to anything we
can represent with a finite state machine.
That includes gadgets that people’s lives
depend on.

Suppose you were designing a machine
for accident and emergency staff to use
when patients arrive at the hospital – a
resuscitator perhaps or a machine to
quickly give them painkillers or lost blood.
You want to be sure it is easy to use. You
want the instruction manual to be correct.
You want to be sure that certain properties
hold. For example, often the machine
will be left in a random state during an
emergency. It would be good to know, when

the next patient arrives, that whatever state
it is in you can always get back to the start
state quickly. Ideally this should involve
doing exactly the same thing, whatever
state the machine has been left in. It
should be easy and obvious without special
training. A designer can check important
properties like that at the outset based on
the finite state machine model of the device.
Similarly, regulators, those charged with
making sure new machines are safe, could
check the same properties before they allow
the machine to be sold in a similar way.

That is exactly how finite state machines are
now being used…helping ensure machines
are safe, saving lives.

www.cs4fn.org 23

24 www.cs4fn.org24 www.cs4fn.org

www.cs4fn.org 25

Representations
and abstraction

Choosing a good representation of a
problem makes a big difference to how
easy it is to solve. We chose a graph
representation for the flexagon because it
is about moving between ‘places’. There
were more decisions to make though –
what should the nodes and edges be? We
chose as nodes the different numbers in
the centre of the sides and edges showing
how we can move from one of these ‘sides’
to another. We could have chosen the six
different colours as our nodes, but that
wouldn’t have worked. We wouldn’t have
been able to tell the difference between
different states of the flexagon that have
the same colours. Choosing the right
representation for a problem matters.

Choosing a representation is actually all
about abstraction: hiding the right detail.
Which features of the flexagon matter
and which don’t for our problem at hand?
The fact that it is made of paper? That
it is made of triangles in the shape of
hexagons? That matters if our problem
is to make a flexagon, but not to explore
it. We can abstract the material and the
shapes away. All that we need to worry
about are the different states and the way
we can move between them. Choosing
the right abstraction for the states matters
as we saw. If we use the colours as our
abstraction of states then we have lost too
much information. What matters is not just
which triangles are face up, but what is in
the centre of the hexagon.

Computational
Thinking

26 www.cs4fn.org

Algorithmic and
logical thinking

Making a flexagon and flexing one are
algorithms. Writing instructions of how to
make one for others involves algorithmic
thinking. We could explore the flexagon at
random, but to do it well we need another
algorithm. We use algorithmic thinking there
too. If we know an algorithm for exploring
a maze, then we can use it to explore a
flexagon too if they are both represented as
graphs. We are using pattern matching and
generalisation to do that.

Any situation where we are exploring
something by moving from place to
place can be represented as a finite state
machine. That holds whatever we mean by
a ‘place’ (a flexagon’s side, a junction in a
maze, a tube station, a mode of a gadget,
a web page, and so on) or how to ‘move’
between them (flexing, walking, get on a
train, pressing a button, clicking a link, …).
That is more generalisation.

In coming up with an algorithm we are
doing logical thinking: thinking clearly
through the steps of how to explore the
flexagon so we visit it all. We needed more
logical thinking to decide how to draw the
graph – what to use as nodes for example –
and in thinking through whether properties
hold true of the graph.

A finite state machine is a kind of
computational model. We can simulate the

actual system using it. We can then explore
the flexagon without touching an actual
flexagon, just using our finite state machine
model. The same applies whether that
system is a flexagon, a digital watch or even
the London Underground.

General tools we write for doing things with
finite state machines (simulating them,
checking properties, and so on) will work
for all these situations (generalisation at
work again). Once we have a computational
model we can do more than just simulate
it. We can check properties of it, like
finding the shortest distances between
two points, checking if there are any dead
ends we will get stuck in, and so on. Our
flexagon is small enough that we can
answer those questions just looking at the
graph. For more complicated systems, like
the autopilot of a plane we would need
algorithms to check the properties, visiting
each state and checking the property held
there, automatically. If we create a general
tool for simulating or checking properties
of finite state machines we can use it for
anything we model as one.

Finite state machines also give a way to
rapidly create early versions of programs
so we can check them, trialling lots of
ideas and generating the program before
we commit to creating the final version.
They can even then be used to generate
instruction manuals that are guaranteed to
exactly match the final program.

Computational
Thinking

www.cs4fn.org 27

More to do

Flexagon Birthday Cards
You can have lots of fun with flexagons if
you are creative. Add pictures to the sides
and you can create a puzzle that involves
finding a hidden picture. You could even
create a hexahexaflexagon birthday card
with hidden messages to find.

The other side of the flexagon…
We have completely ignored the other
side of the flexagon! Turn it over and some
sides have no numbers in the centre!
There is a whole new world to explore
by flexing it with that side up. Do any of
the states of that side overlap with those
we already know about? If they do how
do we tell them apart? Perhaps we will
need a different abstraction once we start
drawing the graph? If so what to use? Is
it possible to pass through all the sides
without turning the flexagon over? It’s time
to create a finite state machine for the
flexagon as a whole.

All in all, graphs and
finite state machines
are incredibly useful…
there is a lot of
computational thinking
in a hexahexaflexagon!

Teaching London Computing:
www.teachinglondoncomputing.org

Computer Science for Fun:
www.cs4fn.org

This booklet was written by Paul Curzon, June 2015, with support from the CHI+MED and Teaching London
Computing Teams. It was funded by Queen Mary University of London (QMUL), CHI+MED (EPSRC EP/
G058063/1) involving QMUL, Swansea, UCL and City Universities, the Mayor of London and Department for
Education. cs4fn is a partner on the BBC’s Make it Digital campaign. 24

0_
15

