A magazine where the digital world meets the real world.
On the web
- Home
- Browse by date
- Browse by topic
- Enter the maze
- Follow our blog
- Follow us on Twitter
- Resources for teachers
- Subscribe
In print
What is cs4fn?
- About us
- Contact us
- Partners
- Privacy and cookies
- Copyright and contributions
- Links to other fun sites
- Complete our questionnaire, give us feedback
Search:
The Dark History of Algorithms
Zin Derfoufi, a Computer Science student at Queen Mary, delves into some of the dark secrets of algorithms past.
Algorithms are used throughout modern life for the benefit of mankind whether as instructions in special programs to help disabled people, computer instructions in the cars we drive or the specific steps in any calculation. The technologies that they are employed in have helped save lives and also make our world more comfortable to live it. However, beneath all this lies a deep, dark, secret history of algorithms plagued with schemes, lies and deceit.
Algorithms have played a critical role in some of History's worst and most brutal plots even causing the downfall and rise of nations and monarchs. Ever since humans have been sent on secret missions, plotted to overthrow rulers or tried to keep the secrets of a civilisation unknown, nations and civilisations have been using encrypted messages and so have used algorithms. Such messages aim to carry sensitive information recorded in such a way that it can only make sense to the sender and recipient whilst appearing to be gibberish to anyone else. There are a whole variety of encryption methods that can be used and many people have created new ones for their own use: a risky business unless you are very good at it.
One example is the 'Caesar Cipher' which is named after Julius Caesar who used it to send secret messages to his generals. The algorithm was one where each letter was replaced by the third letter down in the alphabet so A became D, B became E, etc. Of course, it means that the recipient must know of the algorithm (sequence to use) to regenerate the original letters of the text otherwise it would be useless. That is why a simple algorithm of “Move on 3 places in the alphabet" was used. It is an algorithm that is easy for the general to remember. With a plain English text there are around 400,000,000,000,000,000,000,000,000 different distinct arrangements of letters that could have been used! With that many possibilities it sounds secure. As you can imagine, this would cause any ambitious codebreaker many sleepless nights and even make them go bonkers!!! It became so futile to try and break the code that people began to think such messages were divine!
But then something significant happened. In the 9th Century a Muslim, Arabic Scholar changed the face of cryptography forever. His name was Abu Yusuf Ya'qub ibn Ishaq Al-Kindi -better known to the West as Alkindous. Born in Kufa (Iraq) he went to study in the famous Dar al-Hikmah (house of wisdom) found in Baghdad- the centre for learning in its time which produced the likes of Al-Khwarzimi, the father of algebra - from whose name the word algorithm originates; the three Bana Musa Brothers; and many more scholars who have shaped the fields of engineering, mathematics, physics, medicine, astrology, philosophy and every other major field of learning in some shape or form.
Al-Kindi introduced the technique of code breaking that was later to be known as 'frequency analysis' in his book entitled: 'A Manuscript on Deciphering Cryptographic Messages'. He said in his book:
"One way to solve an encrypted message, if we know its language, is to find a different plaintext of the same language long enough to fill one sheet or so, and then we count the occurrences of each letter. We call the most frequently occurring letter the 'first', the next most occurring one the 'second', the following most occurring the 'third', and so on, until we account for all the different letters in the plaintext sample.
"Then we look at the cipher text we want to solve and we also classify its symbols. We find the most occurring symbol and change it to the form of the 'first' letter of the plaintext sample, the next most common symbol is changed to the form of the 'second' letter, and so on, until we account for all symbols of the cryptogram we want to solve".
So basically to decrypt a message all we have to do is find out how frequent each letter is in each (both in the sample and in the encrypted message - the original language) and match the two. Obviously common sense and a degree of judgement has to be used where letters have a similar degree of frequency. Although it was a lengthy process it certainly was the most efficient of its time and, most importantly, the most effective.
Since decryption became possible, many plots were foiled changing the course of history. An example of this was how Mary Queen of Scots, a Catholic, plotted along with loyal Catholics to overthrow her cousin Queen Elizabeth I, a Protestant, and establish a Catholic country. The details of the plots carried through encrypted messages were intercepted and decoded and on Saturday 15 October 1586 Mary was on trial for treason. Her life had depended on whether one of her letters could be decrypted or not. In the end, she was found guilty and publicly beheaded for high treason. Walsingham, Elizabeth's spymaster, knew of Al-Kindi's approach.
A more recent example of cryptography, cryptanalysis and espionage was its use throughout World War I to decipher messages intercepted from enemies. The British managed to decipher a message sent by Arthur Zimmermann, the then German Foreign Minister, to the Mexicans calling for an alliance between them and the Japanese to make sure America stayed out of the war, attacking them if they did interfere. Once the British showed this to the Americans, President Woodrow Wilson took his nation to war. Just imagine what the world may have been like if America hadn't joined.
Today encryption is a major part of our lives in the form of Internet security and banking. Learn the art and science of encryption and decryption and who knows, maybe some day you might succeed in devising a new uncrackable cipher or crack an existing banking one! Either way would be a path to riches! So if you thought that algorithms were a bore ... it just got a whole lot more interesting.
Further Reading (External)
"Al Kindi: The Origins of Cryptology: The Arab Contributions" by Ibrahim A. Al-Kadi
Muslim Heritage: Al-Kindi, Cryptography, Code Breaking and Ciphers"The code book: the Science of secrecy from Ancient Egypt to Quantum cryptography" by Simon Singh, especially Chapter one 'The cipher of Queen Mary of Scots'
The Zimmermann Telegram Wikipedia: Arthur_Zimmermann